Effects of fixed pattern noise on single molecule localization microscopy.
نویسندگان
چکیده
The newly developed scientific complementary metal oxide semiconductor (sCMOS) cameras are capable of realizing fast single molecule localization microscopy without sacrificing field-of-view, benefiting from their readout speed which is significantly higher than that of conventional charge-coupled device (CCD) cameras. However, the poor image uniformity (suffered from fixed pattern noise, FPN) is a major obstruction for widespread use of sCMOS cameras in single molecule localization microscopy. Here we present a quantitative investigation on the effects of FPN on single molecule localization microscopy via localization precision and localization bias. We found that FPN leads to almost no effect on localization precision, but introduces a certain amount of localization bias. However, for a commercial Hamamatsu Flash 4.0 sCMOS camera, such localization bias is usually <2 nm and thus can be neglected for most localization microscopy experiments. This study addresses the FPN concern which worries researchers, and thus will promote the application of sCMOS cameras in single molecule localization microscopy.
منابع مشابه
SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe's resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules a...
متن کاملMinimizing detection errors in single molecule localization microscopy.
Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate m...
متن کاملWavelet analysis for single molecule localization microscopy.
Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 10(5) single molecule detections to reconstruct a single image. We hereby present an algorithm based on imag...
متن کاملLocalization accuracy in single-molecule microscopy.
One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for a single molecule is given by, lambda(em)/2pi n(a) square root of gammaAt, where lambda(em), n(a), gamma, A, and t denote the emission wavelength of the ...
متن کاملSimultaneous, accurate measurement of the 3D position and orientation of single molecules.
Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 39 شماره
صفحات -
تاریخ انتشار 2014